有了目標就要勇敢的去實現。每一個選擇IT行業的人應該都不會只是安於現狀那樣簡單點的生活,現在各行各業的競爭壓力可想而知,IT行業也不例外,所以你們要是有了目標就要勇敢的去實現,其中通過 Oracle的1Z0-184-25考試認證也是一次不小的競爭方式之一,通過了此考試,那麼你的IT生涯將會大展宏圖,會有一幅不一樣的藍圖等著你去勾勒,而我們VCESoft網站可以提供你真實準確的培訓資料,幫助你通過考試獲得認證,從而實現你的藍圖理想。
| 主題 | 簡介 |
|---|---|
| 主題 1 |
|
| 主題 2 |
|
| 主題 3 |
|
| 主題 4 |
|
我們VCESoft有很多IT專業人士,我們提供的考試練習題和答案是由很多IT精英認證的。我們VCESoft提供的考試練習題和答案覆蓋面相當大,正確率可達100%。雖然有很多類似網站,也許他們可以為你提供學習指南以及線上服務,但我們VCESoft是領先這些眾多網站的。能使VCESoft在這麼多同行中脫穎而出的原因是我們有相當準確確命中考題的考試練習題和答案以及可以對考試練習題和答案迅速的更新。這樣可以很好的提高通過率,讓準備參加Oracle 1Z0-184-25認證考試的人更安心地選擇使用VCESoft為你提供的考試練習題和答案通過考試。我們VCESoft 100%保證你通過Oracle 1Z0-184-25認證考試
問題 #50
What is the default distance metric used by the VECTOR_DISTANCE function if none is specified?
答案:A
解題說明:
The VECTOR_DISTANCE function in Oracle 23ai computes vector distances, and if no metric is specified (e.g., VECTOR_DISTANCE(v1, v2)), it defaults to Cosine (C). Cosine distance (1 - cosine similarity) is widely used for text embeddings due to its focus on angular separation, ignoring magnitude-fitting for normalized vectors from models like BERT. Euclidean (A) measures straight-line distance, not default. Hamming (B) is for binary vectors, rare in 23ai's FLOAT32 context. Manhattan (D) sums absolute differences, less common for embeddings. Oracle's choice of Cosine reflects its AI focus, as documentation confirms, aligning with industry norms for semantic similarity-vital for users assuming defaults in queries.
問題 #51
You are working with vector search in Oracle Database 23ai and need to ensure the integrity of your vector data during storage and retrieval. Which factor is crucial for maintaining the accuracy and reliability of your vector search results?
答案:C
解題說明:
In Oracle Database 23ai, vector search accuracy hinges on the consistency of the embedding model. The VECTOR data type stores embeddings as fixed-dimensional arrays, and similarity searches (e.g., using VECTOR_DISTANCE) assume that all vectors-stored and query-are generated by the same model. This ensures they occupy the same semantic space, making distance calculations meaningful. Regular updates (B) maintain data freshness, but if the model changes, integrity is compromised unless all embeddings are regenerated consistently. The distance algorithm (C) (e.g., cosine, Euclidean) defines how similarity is measured but relies on consistent embeddings; an incorrect model mismatch undermines any algorithm. Physical storage location (D) affects performance, not integrity. Oracle's documentation stresses model consistency as a prerequisite for reliable vector search within its native capabilities.
問題 #52
Which DDL operation is NOT permitted on a table containing a VECTOR column in Oracle Database 23ai?
答案:D
解題說明:
Oracle Database 23ai imposes restrictions on DDL operations for tables with VECTOR columns to preserve data integrity. CTAS (A) is permitted, as it copies the VECTOR column intact into a new table, maintaining its structure. Dropping a VECTOR column (B) is allowed via ALTER TABLE DROP COLUMN, as it simply removes the column without altering its type. Adding a new VECTOR column (D) is supported with ALTER TABLE ADD, enabling schema evolution. However, modifying an existing VECTOR column's data type to a non-VECTOR type (C) (e.g., VARCHAR2, NUMBER) is not permitted because VECTOR is a specialized type with dimensional and format constraints (e.g., FLOAT32), and Oracle does not support direct type conversion due to potential loss of semantic meaning and structure. This restriction is documented in Oracle's SQL reference.
問題 #53
You need to prioritize accuracy over speed in a similarity search for a dataset of images. Which should you use?
答案:B
解題說明:
To prioritize accuracy over speed, exact similarity search with a full table scan (C) computes distances between the query vector and all stored vectors, guaranteeing 100% recall without approximation trade-offs. HNSW with 70% target accuracy (A) and IVF with 70% (D) are approximate methods, sacrificing accuracy for speed via indexing (e.g., probing fewer neighbors). Multivector search (B) isn't a standard Oracle 23ai term; partitioning aids scale, not accuracy. Exact search, though slower, ensures maximum accuracy, as per Oracle's vector search options.
問題 #54
Which of the following actions will result in an error when using VECTOR_DIMENSION_COUNT() in Oracle Database 23ai?
答案:A
解題說明:
The VECTOR_DIMENSION_COUNT() function in Oracle 23ai returns the number of dimensions in a VECTOR-type value (e.g., 512 for VECTOR(512, FLOAT32)). It's a metadata utility, not a validator of content or structure beyond type compatibility. Option B-using a vector with an unsupported data type-causes an error because the function expects a VECTOR argument; passing, say, a VARCHAR2 or NUMBER instead (e.g., '1,2,3' or 42) triggers an ORA-error (e.g., ORA-00932: inconsistent datatypes). Oracle enforces strict typing for vector functions.
Option A (exceeding specified dimensions) is a red herring; the function reports the actual dimension count of the vector, not the column's defined limit-e.g., VECTOR_DIMENSION_COUNT(TO_VECTOR('[1,2,3]')) returns 3, even if the column is VECTOR(2), as the error occurs at insertion, not here. Option C (duplicate values, like [1,1,2]) is valid; the function counts dimensions (3), ignoring content. Option D (using TO_VECTOR()) is explicitly supported; VECTOR_DIMENSION_COUNT(TO_VECTOR('[1.2, 3.4]')) returns 2 without issue. Misinterpreting this could lead developers to over-constrain data prematurely-B's type mismatch is the clear error case, rooted in Oracle's vector type system.
問題 #55
......
人生充滿選擇,選擇不一定給你帶來絕對的幸福,但選擇給了你絕對的機會,而一旦錯過選擇,只能凝望。 VCESoft Oracle的1Z0-184-25考試培訓資料是每個IT人士通過IT認證必須的培訓資料,有了這份考試資料就等於手握利刃,所有的考試難題將迎刃而解。 VCESoft Oracle的1Z0-184-25考試培訓資料是針對性強,覆蓋面廣,更新快,最完整的培訓資料,有了它,所有的IT認證都不要害怕,你都會順利通過的。
1Z0-184-25考試題庫: https://www.vcesoft.com/1Z0-184-25-pdf.html
ইসলাম কেবল কতগুলো ধর্মীয় বিধি-বিধানের মধ্যে সীমাবদ্ধ নয়। ইসলামের সীমানা ব্যক্তিগত, পারিবারিক, সামাজিক জীবন ছাড়িয়ে রাজনৈতিক, সাংস্কৃতিক, অর্থনৈতিক, জাতীয় ও আন্তর্জাতিক জীবনেও বিস্তৃত।
স্বত্ব © ২০২২ আম্মার’স অনলাইন ইন্সটিটিউশন কতৃক সর্বস্বত্ব সংরক্ষিত